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Tensor products of quantum logics and effect algebras with some known problems are
reviewed. It is noticed that although tensor products of effect algebras having at least one
state exist, in the category of complex Hilbert space effect algebras similar problems
as with tensor products of projection lattices occur. Nevertheless, if one of the two
coupled physical systems is classical, tensor product exists and can be considered as a
Boolean power. Some applications of tensor products (in the form of Boolean powers)
to quantum measurements are reviewed.
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1. TENSOR PRODUCTS OF QUANTUM LOGICS

In the quantum logic approach to quantum mechanics, the set of all events
is modeled by an abstract algebraic structure called aquantum logic(Birkhoff
and von Neumann, 1936). Most usually, the quantum logic is supposed to be aσ -
orthomodular poset, resp. lattice (Varadarajan, 1985). Recall that an orthomodular
poset (OMP)L is a bounded partially ordered set with the smallest elements 0 and
the greatest element 1, endowed with an orthocomplementation′ : P→ P such
that (i)a ≤ b⇒ b′ ≤ a′, (ii) a′′ = a, a ∨ a′ = 1, which satisfies the orthomodular
law a ≤ b⇒ b = a ∨ (a′ ∧ b) (it is supposed that all involved lattice operations
exist). If, in addition,∨i ai exists inL for any sequence (ai )i of elements such that
ai ≤ a′j wheneveri 6= j , we obtainσ -orthomodular poset(σ -OMP). An OMP,
which is a lattice, is an orthomodular lattice (OML).

We call elementsa, b ∈ L orthogonal, writtena ⊥ b, if a ≤ b′. Let P andQ
be (σ -) orthomodular posets. A mappingφ: P→ Q is a (σ -) morphismif φ(1)= 1,
∀a ∈ P, φ(a′) = φ(a)′, and for every finite (countable) pairwise orthogonal family
(ai )i , φ(∨i ai ) = ∨iφ(ai ). A bijective morphism is anisomorphismif the inverse
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mappingφ−1 is also a morphism. A morphism preserving all existing joins and
meets will be called ahomomorphism.

A (σ -additive)stateonL is a mappings: L → R+([0,1]) such that (i)s(1)= 1
and (ii)∀a, b ∈ L , a⊥ b⇒ s(a ∨ b) = s(a)+ s(b) (for every pairwise orthogonal
sequence (ai )i , such that∨i ai ∈ L , s(∨i ai ) =

∑
i s(ai )). A set of statesM on L is

calledordering if m(a) ≤ m(b) for all m ∈ M impliesa ≤ b (a, b ∈ L).
Let S1 andS2 be two physical systems described by quantum logicsP andQ,

respectively. To describe a composite systemS1+ S2, we need a quantum logic,
which we denote byP ⊗ Q, with some desirable properties. Such properties were
formulated in Foulis and Randall (1981) as follows:

(i) P ⊗ Q is an OMP.
(ii) ⊗ is a map fromP × Q to P ⊗ Q such that,p1⊗ q1 ⊥ p2⊗ q2 if either

p1 ⊥ p2 or q1 ⊥ q2.
(iii) If α andβ are states onP andQ, respectively, then there exists a stateγ

on P ⊗ Q such thatγ (P ⊗ Q) = α(p)β(q) for all p ∈ P and allq ∈ Q.

The following counterexample found by Foulis and Randall (1981) shows
that suchP ⊗ Q may not exist. Let us consider the “pentagon,” i.e., an OMP
L with the Greechie diagram (Pt´ak and Pulmannov´a, 1991) consisting of the
blocks

{a, x, b}, {b, y, c}, {c, z, d}, {d, u, e}, {e, v, a}.
L is an OML in fact, and has an ordering set of states. PutP = Q = L, and
assume thatP ⊗ Q with the properties listed above exists. Then the setD = {a⊗
a, b⊗ c, c⊗ e, d ⊗ b, e⊗ d} consists of pairwise orthogonal elements. Consider
the stateα on P such thatα(a) = α(b) = α(c) = α(d) = α(e) = 1

2, andα(x) =
α(y) = α(z) = α(u) = α(v) = 0. Putβ = α, then in the stateγ we haveγ (∨D) =
5
4 > 1, a contradiction.

In the Hilbert space approach to quantum mechanics, the quantum logic
corresponds to the set of all closed linear subspaces of a Hilbert spaceH , or
equivalently, to the set of all orthogonal projections onH , which is called a Hilbert
lattice denoted byP(H ). Tensor products in the category of Hilbert lattices were
studied by Malolcsi, (1975) and Aerts and Daubechies (1978). The definition is as
follows (Malolcsi, 1975):

Let H1 and H2 be Hilbert spaces, both complex or both real. For a Hilbert
spaceH , (P(H ); u1, u2) is called atensor productof P(H1) andP(H2) if

(i) u1: P(Hi )→ P(H ) is aσ -homomorphism (i = 1, 2),
(ii)

∞∨
n=1

∞∨
m=1

(
u1
(
Mn

1

) ∧ u2
(
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2

)) = ( ∞∨
n=1
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for any pairwise orthogonal elementsMn
1 of P(H1) and any pairwise

orthogonal elementsMm
2 of P(H2),

(iii) u1(P(H1)) and u2(P(H2)) generateP(H ), that is the smallestσ -
OML of subspaces containing bothu1(P(H1)) and u2(P(H2))
is P(H ).

Let (P(H )); u1, u2) and (P(H ′); u′1, u′2) be tensor products ofP(H1)
and P(H2). We say that (P(H ′); u′1, u′2) is subordinatedto (P(H ); u1, u2) if
there is aσ -homomorphismu : P(H )→ P(H ′) such thatu′i = u ◦ ui (i = 1, 2).
If ( P(H ); u1, u2) is also subordinated to (P(H ); u′1, u′2) then the two
tensor products are said to beequivalent. It was proved that the only possible
subordination between tensor products of Hilbert space lattices is equivalence
(Malolcsi, 1975).

Let M2 ∈ P(H2), M2 6= 0 be fixed. The mapf1,M2 : P(H1)→ P(u2(M2))
defined by

f1,M2 = u1(M1) ∧ u2(M2) (M1 ∈ P(H1))

is aσ -homomorphism. The same is true for the mapf2,M1 defined similarly for a
fixed nonzero elementM1 of P(H1).

If we add the followingcondition of fullness: theσ -homomorphismsf1,[x2]

and f[x1],1 are surjective for all nonzerox2 ∈ H2 andx1 ∈ H1 (where [x] denotes the
one-dimensional subspace corresponding to a vectorx), we obtain the following
result.

Theorem 1.1. Let H1 and H2 be Hilbert spaces, dim H1 ≥ 3, dim H2 ≥ 3. If the
Hilbert spaces are complex, then there exist exactly two (nonequivalent) tensor
products of P(H1) and P(H2) satisfying the condition of fullness. They are given
by

(i) H = H1⊗ H2, u1(M1) = M1⊗ H2, u2(M2) = H1⊗ M2;
(ii) H = H̄1⊗ H2, u1(M1) = M̄1⊗ H2, u2(M2) = H̄1⊗ M2; whereK̄ de-

notes the conjugate Hilbert space of a Hilbert space K , and⊗ denotes
the usual tensor product of Hilbert spaces.

If the Hilbert spaces are real, there is only one tensor product of P(H1)
and P(H2) satisfying the condition of fullness. It can be obtained from the above
formulae, taking the case (i).

A similar result was obtained in Aerts and Daubechies (1978), where the
problem was studied in a more general context.

The problems with tensor products were one of the reasons to replace ortho-
modular posets by more general structures.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468224 August 19, 2003 2:1 Style file version May 30th, 2002

910 Pulmannová

2. TENSOR PRODUCTS OF EFFECT ALGEBRAS

Effect algebras were introduced as an abstraction of the Hilbert space effects,
i.e., self-adjoint operators between the zero operator 0 and the identity operator
I on a Hilbert spaceH . These operators play an important role in the theory of
quantum measurements, because quantum mechanical observables, represented
by positive operator valued measures, have their ranges in the setE(H ) of the
Hilbert space effects.

An effect algebrais a partial algebra (E;⊕, 0, 1) with a binary partial opera-
tion⊕ and two nullary operations 0, 1 satisfying the following conditions.

(E1) If a⊕ b is defined, thenb⊕ a is defined anda⊕ b = b⊕ a.
(E2) If a⊕ b and (a⊕ b)⊕ c are defined, thenb⊕ c anda⊕ (b⊕ c) are

defined and (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3) For everya ∈ E there is a uniquea′ ∈ E such thata⊕ a′ = 1.
(E4) If a⊕ 1 exists, thena = 0.

In an effect algebraE, we writea ≤ b iff there isc ∈ E such thata⊕ c = b. It
is easy to check that≤ is a partial order onE. In this partial order, 0 is the least and
1 is the greatest element ofE. Moreover, it is possible to introduce a new partial
operationª; bª a is defined iffa ≤ b and thena⊕ (bª a) = b. It can be proved
thata⊕ b is defined iffa ≤ b′ iff b ≤ a′. Therefore, it is usual to denote the domain
of ⊕ by⊥. We say that elementsa andb in an effect algebra E areorthogonalif
a ⊥ b. In what follows, when we writea⊕ b we mean thata⊕ b is defined (i.e.,
a ⊥ b). Owing to associativity (E2), we may omit parentheses ina1⊕ a2⊕ a3 and
a1⊕ a2⊕ · · · ⊕ an, the latter term being defined by induction. We will say that
the elementsa1, . . . , an areorthogonal if the elementa1⊕ · · · ⊕ an exists inL.
More generally, we say that{aα}α is anorthogonal familyif every finite subfamily
is orthogonal.

An effect algebraL is called (σ )-orthocompleteif for every (countable) in-
dexed familyA := (aα)α of elements ofL such that its every finite subfamily is
orthogonal, the element⊕A :=∨F ⊕{a : a ∈ F} is defined, where the supremum
goes over all finite subfamilies ofA.

It turns out that the class of effect algebras contains all known structures used
so far as quantum logics—orthomodular lattices, orthomodular posets, orthoalge-
bras, Boolean algebras—as special subclasses, and it also contains MV-algebras,
which were introduced as an algebraic basis of many-valued logic.

The following relations between effect algebras and abelian groups were
proved in (Foulis and Bennett, 1994).

Let G be a partially ordered abelian group, let 06= u ∈ G+, and letL =
G+[0, u] := {g ∈ G+ : 0≤ g ≤ u}. ThenL can be organized into an effect alge-
bra by definingp⊕ q iff p+ q ∈ L, in which casep⊕ q = p+ q. In the effect
algebraL, we havep′ = u− p and the effect partial order onL coincides with the
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restriction toL of the partial order onG. An effect algebra of the formG+[0, u]
as described above is called aninterval effect algebra. Important examples of in-
terval effect algebras areR+[0, 1], the unit interval of the real line, and the set of
Hilbert space effects, i.e., self-adjoint operators in the interval [0,I ] on a Hilbert
space.

Let E be an effect algebra,G an Abelian group. A mapρ : E→ G
is a G-valued measure onE if p ⊥ q⇒ ρ(p⊕ q) = ρ(p)+ ρ(q) for all p,
q ∈ E.

Let L be an effect algebra. By auniversal groupfor L, we mean a pair (G, γ )
consisting of an Abelian groupG and aG-valued measureγ : L → G such that
the following conditions hold.

(i) γ (L) generatesG.
(ii) If K is an Abelian group andφ : L → K is a K -valued measure, then

there is a group homomorphismφ∗ : G→ K such thatφ = φ∗ ◦ γ .

If a universal group exists, it is unique up to isomorphism.

Proposition 2.1. [9, Theorem 9.2]If L is an effect algebra, then there is a
universal group(G, γ ) for L.

Moreover,L is an interval effect algebra iff it has a partially ordered universal
group (G, γ ) with G+ consisting of all finite⊕-sums of elements ofγ (L), andL is
isomorphic with the intervalG+[0, γ (1)] in G. For more details on effect algebras
see Dvure˘censkij and Pulmannov´a (2000) and citations therein.

Let us consider structures consisting of sets endowed with a (everywhere
defined) commutative, associative operation+ with zero element 0 (commutative
monoids, Abelian groups), and possibly with a partial ordering≤ (partially ordered
Abelian groups).

If A, B, C are structures, andf : A× B→ C, we say thatf is abimorphism
(Wehrung, 1996) when for alla ∈ A (resp.b ∈ B) the mapf (a, .) (resp. f (., b)) is
a homomorphism of monoids. If≤ is defined inA, B, C, we say thatf is positive
when for all positivea ∈ A and b ∈ B, we have f (a, b) ≥ 0. We say that the
[positive] bimorphism f is universal(relative to a given category of structures)
when for every structureD and every [positive] bimorphismg : A× B→ D,
there exists a unique [positive] homomorphism̄g : C→ D such that̄g ◦ f = g,
in this case the pair (C, f ) is unique up to isomorphism and the custom is to call it
thetensor productof A andB, writtenC = A⊗ B, f (a, b) = a⊗ b. This notion
is very sensitive to the category of structures under consideration. Notice that for
all the three categories above, the tensor product exists.

The tensor product of Abelian groups does not preserve all inner structure of
the given groups. In Wehrung, 1996, Example 1.5], two torsion-free directed inter-
polation groupsA andB are constructed such thatA⊗oag B is not an interpolation
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group. Even more surprising result is [Wehrung, 1996, Example 1.6]:R⊗oagR in
the category of partially ordered Abelian groups is not lattice-ordered.

Now we will consider tensor products of effect algebras. We will need the
following definitions.

Let E, F be effect algebras. A mappingφ : E→ F is said to be

(i) additive if p, q ∈ E, p ⊥ q⇒ φ(p) ⊥ φ(q) andφ(p⊕ q) = φ(p)⊕
φ(q),

(ii) a morphismif it is additive andφ(1)= 1,
(iii) a positivemorphism ifφ is a morphism andp ∈ E withφ(p) = 0 implies

p = 0,
(iv) a homomorphismif φ is a morphism andp, q ∈ E, ∃p∧ q⇒ φ(p) ∧

φ(q) = φ(p∧ q),
(v) a monomorphismif φ is a morphism andp, q ∈ E, φ(p) ≤ φ(q)⇒

p ≤ q,
(vi) an isomorphismif φ is a surjective monomorphism.

A stateon E is a morphismµ : E→ R+[0, 1] from E into the unit interval
ofR. A setP of states onL is orderingif for a, b ∈ L , m(a) ≤ m(b) for all m ∈ P
impliesa ≤ b.

Let P, Q, andL be effect algebras. A mappingβ : P × Q→ L is called a
bimorphismif, for eachp ∈ P and eachq ∈ Q, β(p, .) Q→ L andβ(., q) : P→
L are additive andβ(1, 1)= 1.

If E andF are effect algebras andφ : E→ F is a morphism, thenφ(0)= 0
and for p, q ∈ E, p ≤ q⇒ φ(p) ≤ φ(q) with φ(q ª p) = φ(q)ª φ(p). In par-
ticular, φ(p′) = φ(p)′. A morphismφ : E→ F is a monomorphism iffφ(p) ⊥
φ(q)⇒ p ⊥ q for all p, q ∈ E. Also, if φ : E→ F is an isomorphism, thenφ is
a bijection andφ−1 is an isomorphism. A morphism is called aσ -morphism if it
preserves all existing countable⊕-sums.

The following definition of tensor products of effect algebras is analogous to
the tensor products of Abelian groups. This analogy was first used in Foulis and
Bennett, 1993 for the construction of tensor products of orthoalgebras, and it was
extended in Dvure˘censkij (1995) to tensor products of effect algebras.

Let P, Q, andL be effect algebras. Let there be a bimorphismθ : P × Q→ L
such that the following conditions are satisfied:

(T1) If β : P × Q→ K is a bimorphism, whereK is any effect algebra,
then there exists a morphismφ : L → K such thatβ = φ ◦ θ .

(T2) Elements of the formθ (p, q), p ∈ P, q ∈ Q generateL (i.e., every
element ofL is a finite⊕-sum of elements of the formθ (p, q)).

The effect algebraL described above is called the tensor product of the effect
algebrasP andQ, and we usually writeL = P ⊗ Q, θ (p, q) = p⊗ q.

In Dvurec̆enskij (1995), the following result was obtained.
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Proposition 2.2. Let P, Q be effect algebras. If there is an effect algebra A and
a bimorphismα : P × Q→ A, then tensor product of P and Q exists.

In particular, if there are statesr ands on P and Q, respectively, then the
tensor productP ⊗ Q exists. Indeed, if we defineβ(p, q) = r (p)s(q), thenβ :
P × Q→ R+[0, 1] is a bimorphism.

Tensor products of two effect algebras can be generalized in a natural way to
tensor products of a finite collection of effect algebras (Pulmannov´a, 1995).

Some properties of tensor products are collected in the following proposition.

Proposition 2.3.

(i) Let A, B, and C be effect algebras. If (A⊗ B)⊗ C exists, then A⊗ (B⊗
C) exists and they are isomorphic (Pulmannová, 1995).

(ii) If D is a collection of effect algebras and for any two elements of D
tensor product exists in D, then tensor product of any finite subset of D
exists in D (Pulmannov́a, 1995).

(iii) Suppose that the effect algebras A and B have a tensor product A⊗
B of effect algebras. Let (GA, α), (GB, β), and GA⊗B, γ ) be the the
universal groups of A, B, and A⊗ B with the embeddingsα, β, and
γ , respectively. Then there is a unique group epimorphismτ : GA ⊗
GB → GA⊗B, such thatτ (α(p)⊗ β(q)) = γ (p⊗ q) for all p ∈ A, q ∈
B [?].

(iv) LetA be a family of effect algebras such that for every finite subfam-
ily Ai , i ≤ n the tensor product

⊗
i≤n Ai exists. Then(

⊗
i≤n Ai )n is a

directed family and the direct limit exists.

We note that the direct limit in (iv) may be considered as an infinite tensor
product of the effect algebras inA. It was used in the histories approach to quantum
mechanics, (Pulmannov´a, 1995), (Rudolph, 1996).

According to Foulis, Bennett (1994), every interval effect algebra has at
least one state. Therefore, the tensor product of interval effect algebras exists.
It is not known if the latter tensor product is an interval effect algebra. But
in the class of interval effect algebras, the tensor product exists. Indeed, ifGp

and GQ are universal groups forP and Q, respectively, thenβ : P × Q→
(GP ⊗oag GQ)+[0, uP ⊗ uQ] is a bimorphism. Here⊗oagdenotes the tensor prod-
uct in the category of ordered Abelian groups (Wehrung, 1996), anduP anduQ

are the corresponding units inG+P andG+Q, respectively. Using similar arguments
to those in Dvure˘censkij (1995), we can show that the tensor product in the class
of interval effect algebras exists.

Tensor products of Hilbert space effects were considered in Dvure˘censkij and
Pulmannov´a (1994). It turns out that the tensor productT of effect algebrasε(H1)
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andε(H2) exists, and is a proper subeffect algebra ofE(H1⊗ H2). Elements of the
tensor product consist of finite⊕-sums of elements of the formAi ⊗ Bi , where
Ai are effects onH1 and Bi are effects onH2. So for example, one-dimensional
projections corresponding to pure entangled states are not contained in the tensor
product. This situation is caused by condition (T2) in the definition of a tensor
product, which expresses a purely algebraic way of generation. In addition, the
bimorphismτ in the latter definition need not satisfy any special conditions. There-
fore, the imagesA→ τ (A, 1) andB→ τ (1, B) of ε(H1) andε(H2) into the tensor
productT may not reflect properties of these effect algebras in an adequate way.

To improve the situation, the following definitions have been introduced
in Gudder (1997).

Definition 2.4. Let P, Q and L be effect algebras. A biomorphismβ : P × Q→ L
is called left strong if for every nonzeroc ∈ Q, β(a, c) ⊥ β(b, c) in L if and only
if a ⊥ b in P. Similarly, a bimorphismβ is right strong if for every nonzeroa ∈ P,
β(a, c) ⊥ β(a, d) in L if and only if c ⊥ d in Q. A bimorphismβ is called strong
if it is left and right strong.

In the category ofσ -orthocomplete effect algebras, the notion of a bimorphism
is replaced byσ -bimorphism (Gudder, 1998): A mappingβ : P × Q→ L is a
σ -bimorphism ifβ is a bimorphism and wheneverai ∈ P andbi ∈ Q are increas-
ing, thenβ(

∨
ai , b) =∨β(ai , b) for everyb ∈ Q, andβ(a,

∨
bi ) =

∨
β(a, bi )

for everya ∈ P. Equivalently, if pi ∈ P, qi ∈ q are orthogonal sequences, then
β(
⊕

pi , q) =⊕β(pi , q) for all q ∈ Q, andβ(p,
⊕

qi ) =
⊕
β(p, qi ) for all p ∈

P. A σ -tensor productof P andQ is a pair (T, τ ), whereT is aσ -orthocomplete
effect algebra andτ : P × Q→ T is a σ -bimorphism such that the following
conditions hold:

T1′ If β : P × Q→ R is a σ -bimorphism into aσ -orthocomplete effect
algebraR, then there is aσ -morphismφ : T → R such thatβ = φ ◦ τ .

T2′ τ (P × Q) generatesT , in the sense that the smallestσ -orthocomplete
subeffect algebra ofT is T .

Definition 2.5. Let P, Q, and L beσ -orthocomlete effect algebras. Effect algebra
L will be called a pretensor product ofP and Q if the following conditions are
satisfied:

(i) There is a strongσ -bimorphismτ : P × Q→ L such thatu1 := τ (., 1)
andu2 := τ (1, .) are homomorphisms,

(ii) L is generated byτ (P × Q).

A pretensor product becomes a tensor product if it has the universal property.
That is (L , τ ) is the tensor product ofP and Q if it satisfies properties (i) and
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(ii) of Definition 2.5 and if (K , τ ′) is another pretensor product, then there is aσ -
homomorphismu : L → K such thatτ ′ = u ◦ τ .

If we add a condition of fullness, i.e., suppose that for every unit vector
r2 ∈ H2, the mappingA→ τ (A, [r2]) is surjective, and similarly, for every unit
vectorr1 ∈ H1, B→ τ ([r1], B) is surjective, we arrive at the following result.

Theorem 2.6. Let H1 and H2 be Hilbert spaces, dim H1 ≥ 2, dim H2 ≥ 2. Let
H be a Hilbert space andτ : ε(H1)× ε(H2)→ ε(H ) be a bimorphism such that
(ε(H ), τ ) is a pretensor product. Then

(i) If the Hilbert spaces are complex, then there are exactly two couples
(H, τ ) which are nonequivalent pretensor products ofε(H1) andε(H2)
satisfying the condition of fullness. They are given by
(1) H = H1⊗ H2, τ (M1, M2) = M1⊗ M2,
(2) H = H1⊗ H̄2, τ (M1, M2) = M̄1⊗ M2,
where⊗ denotes the usual tensor product of Hilbert spaces andK̄ is the
dual of the Hilbert space K .

(ii) If the Hilbert spaces are real, there is only one pretensor product (hence
a tensor product) ofε(H1) andε(H2) satisfying the condition of fullness.
It can be described as the case (1) above.

So we obtain a similar result as in the case of the tensor product of Hilbert
space quantum logics. For more details see Tensor Products of Hilbert Space Effect
Algebras, Preprint.

3. TENSOR PRODUCTS AND QUANTUM MEASUREMENTS

In this paragraph, we reformulate basic features of quantum measurement
theory in the frame of quantum logics and effect algebras. Although the reformu-
lation of quantum measurments in the language of quantum logics cannot solve all
deep problems of the quantum measurement theory, it may contribute to a better
understanding of this problematics.

We first describe elements of a measurement theory in the traditional Hilbert
space approach (see Buschet al. (1991) for more details). Let a physical system
S be described by a Hilbert spaceHS , and letX be an observable ofS, i.e., a
PO-valued measure onH . Further, letA be a measuring apparatus described by
a Hilbert spaceHA. A measurmentof X is a 5-tupleM = (HA, XA, TA, f, V),
whereXA is apointer observable(a POV measure onHA), TA is an initial state
of A, f is a pointer function, i.e., a measurable functionf : Ä 7→ ÄA, which
correlates the value spaces (Ä, F) and (ÄA, FA) of X andXA, respectively, and
V : T(HS ⊗ HA)→ T(HS ⊗ HA) is a trace-preserving positive linear transfor-
mation of the trace-class operatorsT(HS ⊗ HA) of the composite systemS +A,
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such that the following two requirements are satisfied:

(1) The pointer observable is a classical, that is, an observable which com-
mutes with all other observables onA.

(2) The following equation is satisfied for allF ∈ F and for all possible
initial statesT ∈ T(H+S1

):

tr (T X(F)) = tr (RAV(T ⊗ TA)XA f −1(F))). (1)

HereRAV(T ⊗ TA) denotes the reduction of the final state ofS +A to
A via relative trace.

If also the equation

tr (T X(F)) = tr (RSV(T ⊗ TA)X(F))) (2)

is satisfied for allF ∈ F and all T ∈ T(HS )+1 the measurementM is called a
first-kind measurement. Here,RSV(T ⊗ TA) means the reduction of the final
stateV(T ⊗ TA) of S +A to the subsystemS.

All features of a measurementM that pertain to the object systemS are
summarized in the instrumentIM of the measurementM. Theinstrument IM is
an operation-valued measureIM : F → L(T(HS ))+, whereL(T(HS ))+ is the set
of all operations (i.e. positive linear transformation ofT(HS ))+ defined by

IM(F)T = RS (V T ⊗ TA) · I ⊗ XA( f −1(F)), (3)

F ∈ F , T ∈ T(HS ). The instrument reproduces the observableX via the equations

tr (T X(F)) = tr (IM(F)T) (4)

for all F ∈ F , T ∈ T(HS )+1 . An instrument gives the nonnormalized final states
IM(F)T of S on the condition that the measurement leads to a result in the setF .

Two measurements are calledequivalentif the corresponding instruments are
equal.

A measurementM, or the corresponding instrumentIM, is calledrepeatable
if for all E, F ∈ F and allT ∈ T(HS )+1 the following equality holds:

tr (IM(E)(IM(F)T)) = tr (IM(E ∩ F)T). (5)

Now we will describe a quantum systemS by its effect algebraL. To describe
a measurement, we need to find a suitable model for the coupling of a quantum
systemS described byL with a classical systemA (the measuring apparatus)
described by a Booleanσ -algebraB. For this model, we have chosen a bounded
Boolean power.

Let L be an effect algebra, andB be a Boolean algebra. Then the tensor product
L ⊗ B in the category of effect algebras is isomorphic to a bounded Boolean power
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of L with respect toB. A bounded Boolean powerof L with respect ofB is the
setL ⊗ B of functions fromL to B with finite range and such that

f (`1) ∧ f (`2) = 0B if `1 6= `2 and
∨
`∈L

f (`) = 1B. (6)

We recall thatL ⊗ B is an effect algebra of the same type asL and that there are full
embeddings (i.e., injective morphisms preserving all existing lattice operations)
λ : L → L ⊗ B, whereλ(a)(x) = 1B if x = a andλ(a)(x) = 0B if x 6= a, and
β : B→ L ⊗ B, whereβ(b)(1L ) = b, β(b)(0L ) = b′, andβ(b)(x) = 0B if x 6=
1L , 0L (Dvurec̆enskij and Pulmannov´a, 1994). It turns out that every elementf of
L ⊗ B can be written in the form

f =
∑
i∈K

λ(`i )ti

where (ti )i∈K is a finite partition of unity in B and (̀i ))i∈K is a finite subset of
elements ofL, such that

f (x) =
∨
i∈K

λ(`i )(x) ∧ ti (7)

If all the elements̀ i , i ∈ K are different, the above representations are unique.
Let f =∑k∈K λ(ak)tk, g =∑ j∈J λ(bj )sj be the unique representations of

f, g ∈ L ⊗ B. Then f ⊥ g iff ak ⊥ bj whenevertk ∧ sj 6=B, k ∈ K , j ∈ J, and
f ⊕ g =∑k, j :tk∧sj 6=0B

λ(ak ⊕ bj )tk ∧ sj .
If m is a state onL andµ is a state onB, we can define a (finitely additive)

product state m⊗ µ by

m⊗ µ
(∑

i

λ(`i )ti

)
=
∑

m(`iµ(ti ). (8)

Let (Ä, F) be a measurable space. An (Ä, F)-valuedobservableon L is a σ -
morphism fromF to L.

We will assume that a quantum mechanical systemS is described by an
(σ -orthocomplete) effect algebraL possessing an ordering set of statesPL .

The measuring apparatusA is supposed to be a classical object described by
a Booleanσ -algebraB with ordering set of statesPB.

The coupled systemS +A will be described by the bounded Boolean power
L ⊗ B. As a physical state spaceP of S +A we will consider the convex enve-
lope of the set of all product states, that is, the set of allσ -convex combinations∑

i α1mi ⊗ µi , mi ∈ PL , µi ∈ PB andαi , i ∈ N, are nonnegative numbers with
sum 1.

Assume that we want to measure an observableX on S. Let (Ä, F) be the
value space ofX. We choose a measuring apparatusA described by a Boolean
σ -alegebraB and an observableXA on B with the value space (ÄA, FA). If
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the value spaces ofX and XA are different, we choose a measurable function
f : Ä→ ÄA (a pointer function). If the initial state ofS is m and the initial state
ofA is mA, the initial state of the coupled systemS +A will be the product state
m⊗mA. The measurement means an interaction between S and A, which results
in a change of the state of the coupled system. This change will be described by a
convexity preserving transformationV : P → P. If (m⊗mA) is the final state of
S +A after the measurement, the restrictionsV(m⊗mA) · λ andV(m⊗mA) · β
uniquely describe the final states ofS andA, respectively.

A 5-tupleM = (B, XA, mA, f, V) will be called ameasurementof X if the
following equality is satisfied:

m(X(F)) = V(m⊗mA · β(XA( f −1(F))), ∀F ∈ F , ∀m ∈ PL . (9)

If also the equality

m(X(F)) = V(m⊗mA · λ(X(F)), ∀F ∈ F , ∀m ∈ PL . (10)

the measurementM is called of thefirst kind.
For every measurementM, aninstrumentis defined by

IM(F)(m) = V(m⊗ (F)mA)(β(XA( f −1(F))) ∧ λ (11)

for all F ∈ F and allm ∈ PL . HereIM(F)(m) is aσ -additive measure onL, and
the state obtained after normalization can be interpreted as the final state onS after
measurement on the condition that the measurement leads to a result in the setF .
The instrument reproduces the observableX via the equations

IM(m)(1L ) = m(X(F)), ∀F ∈ F , ∀m ∈ PL . (12)

A measurementM is calledrepeatableif for all E, F ∈ F and allm,

IM(E)IM(F)(m)(1L ) = IM(E ∩ F)(m)(1L ). (13)

Two measurementsM1 andM2 areequivalentif their instruments are equal.
The basic result is the following.

Theorem 3.1. For every regular observable X on an effect algebra L there exists
a measurement.

The measurement in the above theorem need not be repeatable. The existence
of a repeatable measurement was proved for discrete observables on orthomodular
lattices admitting conditional probabilities in (Pulmannov´a, 1994), where also
some other special types of measurements have been studied (see also Tensor
Products of Hilbert Space Effect Algebras, Preprint.).
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