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Tensor products of quantum logics and effect algebras with some known problems are
reviewed. Itis noticed that although tensor products of effect algebras having at least one
state exist, in the category of complex Hilbert space effect algebras similar problems
as with tensor products of projection lattices occur. Nevertheless, if one of the two
coupled physical systems is classical, tensor product exists and can be considered as a
Boolean power. Some applications of tensor products (in the form of Boolean powers)
to guantum measurements are reviewed.
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1. TENSOR PRODUCTS OF QUANTUM LOGICS

In the guantum logic approach to quantum mechanics, the set of all events
is modeled by an abstract algebraic structure callegiantum logic(Birkhoff
and von Neumann, 1936). Most usually, the quantum logic is supposed te-be a
orthomodular poset, resp. lattice (Varadarajan, 1985). Recall that an orthomodular
poset (OMPL is a bounded partially ordered set with the smallest elements 0 and
the greatest element 1, endowed with an orthocomplementatibn— P such
that(la<b= b <&, (ii)a’” =a,aVva = 1, which satisfies the orthomodular
lawa <b = b=av (& ADb) (itis supposed that all involved lattice operations
exist). If, in addition,v;a exists inL for any sequencex(); of elements such that
a, < a; whenever # j, we obtainc-orthomodular posefc-OMP). An OMP,
which is a lattice, is an orthomodular lattice (OML).

We call elements, b € L orthogona) writtena L b, ifa < b’. LetP andQ
be (-) orthomodular posets. AmappipgP — Qisa (-) morphisnif ¢(1) = 1,
vVa e P, ¢(a') = ¢(a)’, and for every finite (countable) pairwise orthogonal family
@), p(via) = Vvig(a). A bijective morphism is amsomorphisnif the inverse
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mappinge ! is also a morphism. A morphism preserving all existing joins and
meets will be called @aomomorphism

A (c-additive)stateonL is amapping: L — R*([0,1]) suchthat (i(1) = 1
and(ii)va,be L,a L b = s(av b) =s(a) + s(b) (for every pairwise orthogonal
sequenceg )i, such thatvia; € L, s(via) = >_; s(&)). A set of stated onL is
calledorderingif m(a) < m(b) for all m € M impliesa <b(a,b e L).

Let S and$; be two physical systems described by quantum loBiesdQ,
respectively. To describe a composite sys@@m- S, we need a quantum logic,
which we denote by ® Q, with some desirable properties. Such properties were
formulated in Foulis and Randall (1981) as follows:

(i) P® Qisan OMP.
(i) ®@isamapfromP x QtoP ® Qsuchthatp; ® q; L p2 ® g if either
pr L pzoras L g
(i) If « andp are states o andQ, respectively, then there exists a state
onP ® Qsuchthay (P ® Q) = «(p)B(q)forall p e Pandallg € Q.

The following counterexample found by Foulis and Randall (1981) shows
that suchP ® Q may not exist. Let us consider the “pentagon,” i.e., an OMP
L with the Greechie diagram @k and Pulmanna;”1991) consisting of the
blocks

{a, x, b}, {b, vy, ¢}, {c, z,d}, {d, u, €}, {e, v, a}.

L is an OML in fact, and has an ordering set of states. Put Q = L, and
assume thalP ® Q with the properties listed above exists. Then thelxet {a ®
a,b®c,c®red®hb,e® d}consists of pairwise orthogonal elements. Consider
the statex on P such thatx(a) = a(b) = a(c) = a(d) = a(e) = % anda(x) =
a(y) = a(2) = a(u) = a(v) = 0. Putg = «, theninthe statg we havey (VD) =

2 > 1, a contradiction.

In the Hilbert space approach to quantum mechanics, the quantum logic
corresponds to the set of all closed linear subspaces of a Hilbert $paoce
equivalently, to the set of all orthogonal projectionstbywhich is called a Hilbert
lattice denoted byP(H). Tensor products in the category of Hilbert lattices were
studied by Malolcsi, (1975) and Aerts and Daubechies (1978). The definition is as
follows (Malolcsi, 1975):

Let H; and H, be Hilbert spaces, both complex or both real. For a Hilbert
spaceH, (P(H); uy, uy) is called aensor productf P(H;) and P(H,) if

(('? ui: P(Hi) - P(H) is ac-homomorphismi(= 1, 2),
li

V V (@(M2) A uo(m) = (i’? ul<w>) A (\°°/ uzw;"))

n=1m=1 n=1 m=1
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for any pairwise orthogonal elemenis} of P(H;) and any pairwise
orthogonal elements1y" of P(Hy),

(iii) ui(P(H1)) and ux(P(H.)) generateP(H), that is the smallestr-
OML of subspaces containing bothi;(P(H;)) and uy(P(Hz))
is P(H).

Let (P(H)); ui, uz) and (P(H’);uj, u;) be tensor products oP(Hy)
and P(H). We say that P(H’); uj, u3) is subordinatedto (P(H); us, up) if
there is ao-homomorphisnu : P(H) — P(H’) such thaty = uou;(i =1, 2).
If (P(H); up, up) is also subordinated toP(H);uj,us;) then the two
tensor products are said to kquivalent It was proved that the only possible
subordination between tensor products of Hilbert space lattices is equivalence
(Malolcsi, 1975).

Let Mz € P(Hy), Mz # 0 be fixed. The magfi m, : P(H1) — P(u2(My))
defined by

f1,m, = U1(M1) A U2(M2) (M1 € P(H1))

is ac-homomorphism. The same is true for the miag, defined similarly for a
fixed nonzero elemen¥l; of P(H,).

If we add the followingcondition of fullnessthe o -homomorphismsfy [y,
andfiy,),1 are surjective for allnonzese € Hyandx; € H; (where k] denotes the
one-dimensional subspace corresponding to a vegtave obtain the following
result.

Theorem 1.1. Let H; and H, be Hilbert spaces, dim +> 3, dim H, > 3. If the
Hilbert spaces are complex, then there exist exactly two (honequivalent) tensor
products of FH;) and P(H,) satisfying the condition of fullness. They are given

by

(i) H =H1 ® Hy, u3(M1) = M1 ® Ha, (M) = Hy ® My; _

(II) H=H;® Hy, U]_(Ml) = M1 ® Ho, U2(M2) = H1 ® M,; whereK de-
notes the conjugate Hilbert space of a Hilbert space K, @ndenotes
the usual tensor product of Hilbert spaces.

If the Hilbert spaces are real, there is only one tensor product Ol
and P(H,) satisfying the condition of fullness. It can be obtained from the above
formulae, taking the case (i).

A similar result was obtained in Aerts and Daubechies (1978), where the
problem was studied in a more general context.

The problems with tensor products were one of the reasons to replace ortho-
modular posets by more general structures.



910 Pulmannova

2. TENSOR PRODUCTS OF EFFECT ALGEBRAS

Effect algebras were introduced as an abstraction of the Hilbert space effects,
i.e., self-adjoint operators between the zero operator 0 and the identity operator
| on a Hilbert spacéd. These operators play an important role in the theory of
guantum measurements, because quantum mechanical observables, represented
by positive operator valued measures, have their ranges in th#ldgtof the
Hilbert space effects.

An effect algebras a partial algebraK; @, 0, 1) with a binary partial opera-
tion @ and two nullary operations 0, 1 satisfying the following conditions.

(E1) Ifa@ bis defined, the & a is defined andhd b =b & a.

(E2) If a@ b and @ @ b) @ c are defined, theb @ c anda® (b & c) are
defined andd e b)dc=a® (b® c).

(E3) For evena € E there is a unique’ € E suchthaa @ a' = 1.

(E4) If a® 1 exists, thera = 0.

In an effect algebr&, we writea < biffthereisc € E suchthaa @ ¢ = b. It
is easy to check that is a partial order offt. In this partial order, O is the least and
1 is the greatest element &f. Moreover, it is possible to introduce a new partial
operations; b © ais defined iffa < band thera @ (b © a) = b. It can be proved
thata & bis definediffa < b’iff b < &. Therefore, itis usual to denote the domain
of @ by L. We say that elementsandb in an effect algebra E am@rthogonalif
a L b. In what follows, when we writa & b we mean thaa & b is defined (i.e.,

a L b). Owing to associativity (E2), we may omit parentheses i a, @ ag and
aadad--- D ay, the latter term being defined by induction. We will say that
the elementsy, ..., a, areorthogonal if the elementa; @ - - - @ a, exists inL.
More generally, we say théa,, }, is anorthogonal familyif every finite subfamily

is orthogonal.

An effect algebrd. is called ¢)-orthocompleteaf for every (countable) in-
dexed familyA := (a,), of elements ofL such that its every finite subfamily is
orthogonal, the elemesiA ;= \/ &{a : a € F}isdefined, where the supremum
goes over all finite subfamilies of.

It turns out that the class of effect algebras contains all known structures used
so far as quantum logics—orthomodular lattices, orthomodular posets, orthoalge-
bras, Boolean algebras—as special subclasses, and it also contains MV-algebras,
which were introduced as an algebraic basis of many-valued logic.

The following relations between effect algebras and abelian groups were
proved in (Foulis and Bennett, 1994).

Let G be a partially ordered abelian group, let?0u € G*, and letL =
G*[0,u] :={g € G* : 0 < g < u}. ThenL can be organized into an effect alge-
bra by definingp @ qiff p+ g € L, in which casep & g = p + g. In the effect
algebral, we havep’ = u — p and the effect partial order dncoincides with the
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restriction toL of the partial order o1G. An effect algebra of the forrs*[0, u]
as described above is callediaterval effect algebralmportant examples of in-
terval effect algebras af@*[0, 1], the unit interval of the real line, and the set of
Hilbert space effects, i.e., self-adjoint operators in the interval][0n a Hilbert
space.

Let E be an effect algebraiz an Abelian group. A map : E— G
is a G-valued measure ot if pLqg= p(p®q)=p(p)+ p() for all p,
geE.

Let L be an effect algebra. Byumiversal grougdor L, we mean a pairG, y)
consisting of an Abelian grou@ and aG-valued measurg : L — G such that
the following conditions hold.

(i) v(L) generatess.
(i) If K is an Abelian group ang : L — K is aK-valued measure, then
there is a group homomorphisp : G — K such thatp = ¢, o y.

If a universal group exists, it is unique up to isomorphism.

Proposition 2.1. [9, Theorem 9.2]If L is an effect algebra, then there is a
universal groupg(G, y) for L.

Moreover,L is an interval effect algebra iff it has a partially ordered universal
group G, y) with G* consisting of all finitep-sums of elements gf(L), andL is
isomorphic with the intervaB* [0, y(1)] in G. For more details on effect algebras
see Dvureénskij and Pulmannav(2000) and citations therein.

Let us consider structures consisting of sets endowed with a (everywhere
defined) commutative, associative operatiowith zero element 0 (commutative
monoids, Abelian groups), and possibly with a partial orderir{gartially ordered
Abelian groups).

If A, B, C are structures, anfl: A x B — C, we say thaff is abimorphism
(Wehrung, 1996) when for &l € A (respb € B) the mapf (a, .) (resp.f (., b)) is
a homomorphism of monoids. ¥ is defined inA, B, C, we say thatf is positive
when for all positivea € A andb € B, we havef(a, b) > 0. We say that the
[positive] bimorphismf is universal(relative to a given category of structures)
when for every structurd® and every [positive] bimorphisng : A x B — D,
there exists a unique [positive] homomorphigmC — D such thalgo f = g,
in this case the paid, f)is unique up to isomorphism and the customis to call it
thetensor producof A andB, writtenC = A® B, f(a, b) = a ® b. This notion
is very sensitive to the category of structures under consideration. Notice that for
all the three categories above, the tensor product exists.

The tensor product of Abelian groups does not preserve all inner structure of
the given groups. In Wehrung, 1996, Example 1.5], two torsion-free directed inter-
polation groupsA andB are constructed such thAt®°29 B is not an interpolation
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group. Even more surprising result is [Wehrung, 1996, Example R.§°?9R in
the category of partially ordered Abelian groups is not lattice-ordered.

Now we will consider tensor products of effect algebras. We will need the
following definitions.

Let E, F be effect algebras. A mappigg: E — F is said to be

(i) additiveif p,q € E, p L g = ¢(p) L ¢(q) andg(p @ q) = ¢(p) &

$(a),

(ii) a morphismif it is additive andp(1) = 1,

(iii) a positivemorphismifg isamorphismang € E with ¢(p) = 0implies
p=0,

(iv) a homomorphisnif ¢ is a morphism anag, q € E,IpAq = ¢(p) A
¢(@) = ¢(pAQ),

(v) a monomorphismf ¢ is a morphism andp, g € E, ¢(p) < ¢(q) =
p=aq,

(vi) anisomorphisnif ¢ is a surjective monomorphism.

A stateon E is a morphisnu : E — R*[0, 1] from E into the unit interval
of R. A setP of states orL is orderingiffor a,b € L, m(a) < m(b) forallm € P
impliesa < b.

Let P, Q, andL be effect algebras. A mappirg): P x Q — L is called a
bimorphisnif, for eachp € P andeacly € Q, 8(p,.) Q — Landg(.,q) : P —

L are additive ang(1, 1)= 1.

If E andF are effect algebras anfl: E — F is a morphism, theg(0) = 0
and forp,q € E, p < q = ¢(p) = ¢(q) with ¢(q © p) = ¢(a) © ¢(p). In par-
ticular, ¢(p') = ¢(p)’. A morphism¢ : E — F is a monomorphism iffp(p) L
¢(Q)= pLqforall p,q e E.Also, if¢ : E— F is anisomorphism, thes is
a bijection andp~! is an isomorphism. A morphism is calledramorphism if it
preserves all existing countaldie sums.

The following definition of tensor products of effect algebras is analogous to
the tensor products of Abelian groups. This analogy was first used in Foulis and
Bennett, 1993 for the construction of tensor products of orthoalgebras, and it was
extended in Dvuregnskij (1995) to tensor products of effect algebras.

LetP, Q,andL be effectalgebras. Letthere be abimorphismP x Q — L
such that the following conditions are satisfied:

(T1) If B: P x Q— K is a bimorphism, wher& is any effect algebra,
then there exists a morphisgn; L — K such thai8 = ¢ 0 6.

(T2) Elements of the forn#(p, q), p € P,q € Q generateL (i.e., every
element ofL is a finite®-sum of elements of the ford(p, q)).

The effect algebrd. described above is called the tensor product of the effect
algebrasP andQ, and we usually writd. = P ® Q,0(p,q) = p® Q.
In DvureCenskij (1995), the following result was obtained.
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Proposition 2.2. Let P, Q be effect algebras. If there is an effect algebra A and
a bimorphismx : P x Q — A, then tensor product of P and Q exists.

In particular, if there are statesands on P and Q, respectively, then the
tensor producP ® Q exists. Indeed, if we defing(p, q) = r(p)s(q), theng :
P x Q — RT[0, 1] is a bimorphism.

Tensor products of two effect algebras can be generalized in a natural way to
tensor products of a finite collection of effect algebras (Pulmaanb®95).

Some properties of tensor products are collected in the following proposition.

Proposition 2.3.

() LetA, B, and C be effectalgebras. If (2 B) ® C exists, then & (B ®
C) exists and they are isomorphic (Pulmanap%995).

(ii) If D is a collection of effect algebras and for any two elements of D
tensor product exists in D, then tensor product of any finite subset of D
exists in D (Pulmanndy, 1995).

(iif) Suppose that the effect algebras A and B have a tensor prodat A
B of effect algebras. Let (§ «), (Gg, 8), and Gags, ¥) be the the
universal groups of A, B, and & B with the embeddings, 8, and
y, respectively. Then there is a unique group epimorphisnG ®
Gg — Gags, suchthat(a(p) ® 8(q)) = y(p®qg)forallp € A, g e
B[?].

(iv) Let. A be a family of effect algebras such that for every finite subfam-
ily Ai,i <n the tensor produof’, ., Ai exists. Therf®, ., Ai)n is a
directed family and the direct limit exists. -

We note that the direct limit in (iv) may be considered as an infinite tensor
product of the effect algebras.i It was used in the histories approach to quantum
mechanics, (Pulmannay1995), (Rudolph, 1996).

According to Foulis, Bennett (1994), every interval effect algebra has at
least one state. Therefore, the tensor product of interval effect algebras exists.
It is not known if the latter tensor product is an interval effect algebra. But
in the class of interval effect algebras, the tensor product exists. Inde&qg, if
and Gq are universal groups foP and Q, respectively, therB : P x Q —

(Gp ®°G) ™[0, up ® ug]is a bimorphism. Her@°*denotes the tensor prod-
uct in the category of ordered Abelian groups (Wehrung, 1996) uananduqg

are the corresponding units @, anng, respectively. Using similar arguments
to those in Dvureénskij (1995), we can show that the tensor product in the class
of interval effect algebras exists.

Tensor products of Hilbert space effects were considered in Renskij and
Pulmannoa’(1994). It turns out that the tensor prodiicdf effect algebras(H;)
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ande(H,) exists, and is a proper subeffect algebr&@fl; ® H,). Elements of the
tensor product consist of finit®@-sums of elements of the fory, ® Bj, where
A are effects orH; and B; are effects orH,. So for example, one-dimensional
projections corresponding to pure entangled states are not contained in the tensor
product. This situation is caused by condition (T2) in the definition of a tensor
product, which expresses a purely algebraic way of generation. In addition, the
bimorphismz in the latter definition need not satisfy any special conditions. There-
fore, theimage#®\ — (A, 1) andB — (1, B) of ¢(H;) ands(Hy) into the tensor
productT may not reflect properties of these effect algebras in an adequate way.
To improve the situation, the following definitions have been introduced
in Gudder (1997).

Definition2.4. LetP, Q andL be effectalgebras. AbiomorphimP x Q — L
is called left strong if for every nonzeme Q, B(a, ¢) L 8(b, c) in L if and only
if a L bin P. Similarly, a bimorphisng is right strong if for every nonzem € P,
B(a,c) L B(a,d)inLifandonlyifc L din Q. A bimorphismg is called strong
if it is left and right strong.

Inthe category af -orthocomplete effect algebras, the notion of a bimorphism
is replaced by -bimorphism (Gudder, 1998): A mappiny): P x Q — L isa
o-bimorphism ifg is a bimorphism and whenevar € P andb; € Q are increas-
ing, theng(\/ &, b) = \/ B(&, b) for everyb € Q, andB(a, \/ bi) = \/ B(a, by)
for everya € P. Equivalently, if p; € P, g € g are orthogonal sequences, then
B(D pi,a) =P B(p, q)forallg € Q,andB(p, P a) = P A(p, q)forall p e
P. A o-tensor producbf P andQ is a pair {T, t), whereT is ac-orthocomplete
effect algebra and : P x Q — T is ao-bimorphism such that the following
conditions hold:

T If B: P x Q— R is aoc-bimorphism into ac-orthocomplete effect
algebraR, then there is a-morphism¢ : T — Rsuchthai8 = ¢ o 7.

T2 (P x Q) generated, in the sense that the smallestorthocomplete
subeffect algebra of is T.

Definition 2.5. Let P, Q, and L be-orthocomlete effect algebras. Effect algebra
L will be called a pretensor product & and Q if the following conditions are
satisfied:

(i) There is a strong -bimorphismz : P x Q — L such thau; := 7(., 1)
andu, := t(1,.) are homomorphisms,
(i) L is generated by(P x Q).

A pretensor product becomes a tensor product if it has the universal property.
That is (L, 7) is the tensor product oP and Q if it satisfies properties (i) and
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(i) of Definition 2.5 and if K, t’) is another pretensor product, then thereds a
homomorphismu : L — K suchthat’ =uo .

If we add a condition of fullness, i.e., suppose that for every unit vector
r, € Hy, the mappingA — t(A, [r2]) is surjective, and similarly, for every unit
vectorr; € Hy, B — t([r1], B) is surjective, we arrive at the following result.

Theorem 2.6. Let H; and H; be Hilbert spaces, dim H> 2, dim H, > 2. Let
H be a Hilbert space and : ¢(H;) x ¢(Hz) — ¢(H) be a bimorphism such that
(e(H), 1) is a pretensor product. Then

(i) If the Hilbert spaces are complex, then there are exactly two couples
(H, =) which are nonequivalent pretensor products@ifi;) and e(Hy)
satisfying the condition of fullness. They are given by
(1) H=H1 ® Hp, t(M1, M2) = M1 ® My,

(2) H=H1® Hj, (M1, M) = M1 ® My, _
where® denotes the usual tensor product of Hilbert spaceslarid the
dual of the Hilbert space K.

(i) If the Hilbert spaces are real, there is only one pretensor product (hence
a tensor product) of(H;) ande(Hy) satisfying the condition of fullness.

It can be described as the case (1) above.

So we obtain a similar result as in the case of the tensor product of Hilbert
space quantum logics. For more details see Tensor Products of Hilbert Space Effect
Algebras, Preprint.

3. TENSOR PRODUCTS AND QUANTUM MEASUREMENTS

In this paragraph, we reformulate basic features of quantum measurement
theory in the frame of quantum logics and effect algebras. Although the reformu-
lation of quantum measurments in the language of quantum logics cannot solve all
deep problems of the quantum measurement theory, it may contribute to a better
understanding of this problematics.

We first describe elements of a measurement theory in the traditional Hilbert
space approach (see Busethal. (1991) for more details). Let a physical system
S be described by a Hilbert spatés, and letX be an observable &, i.e., a
PO-valued measure df. Further, let4 be a measuring apparatus described by
a Hilbert spaceH 4. A measurmentf X is a 5-tupleM = (H4, X4, Ta, f, V),
whereX 4 is apointer observabl¢a POV measure ohl 4), T4 is an initial state
of A, f is apointer function i.e., a measurable functioh : Q — 4, which
correlates the value spaces,(F) and €2 4, F4) of X andX 4, respectively, and
V:T(Hs ® H4) = T(Hs ® Hy) is a trace-preserving positive linear transfor-
mation of the trace-class operatdréHs ® H_4) of the composite syste + A,



916 Pulmannova

such that the following two requirements are satisfied:

(1) The pointer observable is a classical, that is, an observable which com-
mutes with all other observables gh

(2) The following equation is satisfied for afl € F and for all possible
initial statesT € T(Hg):

tr (T X(F)) = tr(RaV(T @ Ta) X4 fLF))). (1)

HereR 4V (T ® T.A) denotes the reduction of the final stateSof A to
A via relative trace.

If also the equation
tr (T X(F)) = tr(Rs V(T ® T4)X(F))) 2

is satisfied for allF € 7 and allT € T(Hs); the measurement/ is called a
first-kind measurement. Her&sV (T ® T4) means the reduction of the final
stateV (T ® T.A) of S + A to the subsysters.

All features of a measuremen! that pertain to the object systethare
summarized in the instrumeht of the measurementt. Theinstrument }, is
an operation-valued measurg, : F — L(T(Hs))™, whereZ(T (Hs))" is the set
of all operations (i.e. positive linear transformationTdfHs))* defined by

IM(F)T =Rs(VT @ Ta) - | ® Xa(fH(F)), 3)
F € F, T € T(Hs). Theinstrumentreproduces the observabiga the equations

tr (T X(F)) = tr(Im(F)T) (4)

forall F € F, T € T(Hs){. An instrument gives the nonnormalized final states
I (F)T of S on the condition that the measurement leads to a result in the set
Two measurements are callequivalenif the corresponding instruments are
equal.
A measurement, or the corresponding instrumelniy, is calledrepeatable
if forall E, F € Fand allT € T(Hs){ the following equality holds:

tr (L (BE)(m(F)T)) = tr(lm(E N F)T). (5)

Now we will describe a quantum syste$iby its effect algebr& . To describe
a measurement, we need to find a suitable model for the coupling of a quantum
systemS described byl with a classical systeml (the measuring apparatus)
described by a Boolean-algebraB. For this model, we have chosen a bounded
Boolean power.

LetL be an effectalgebra, afglbe a Boolean algebra. Thenthe tensor product
L ® Binthe category of effect algebras isisomorphic to a bounded Boolean power
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of L with respect toB. A bounded Boolean powef L with respect ofB is the
setL ® B of functions fromL to B with finite range and such that

f(ﬁl)/\ f(ﬂz) =0g if El;«éﬁzand\/ f(ﬁ) = 1g. (6)
el

Werecallthat ® Bis an effect algebra of the same typd.aend that there are full
embeddings (i.e., injective morphisms preserving all existing lattice operations)
AL — L®B, wherer(a)(x) = 1g if x =a andi(a)(x) = Og if x # a, and
BB — L® B, whereg(b)(1.) = b, 8(b)(0.) = b, and 8(b)(x) = Og if X #
1., O_ (Dvurecenskij and Pulmannay1994). It turns out that every elemenof
L ® B can be written in the form

f=> Mt
ieK
where )ik is a finite partition of unity in B and&)); <« is a finite subset of
elements oL, such that

F00 = \/ A6)(X) At 7
ieK

If all the elementd;, i € K are different, the above representations are unique.

Let f =3 o M@, 9= >_;c; A(bj)sj be the unique representations of
f,ge L®B. Then f L giff a L b; wheneverty A sj #g, k€ K, j € J, and
f @ g= Zk,j:tkASjyﬁOB )\'(ak @ bJ )tk A S] )

If mis a state ol andyu is a state orB, we can define a (finitely additive)
product state n® u by

me u (Z At )ti) =) _m(tin). (8)

Let (2, F) be a measurable space. Af2,(F)-valuedobservableon L is ao-
morphism fromF to L.

We will assume that a quantum mechanical systens described by an
(o-orthocomplete) effect algebtapossessing an ordering set of stakgs

The measuring apparatusis supposed to be a classical object described by
a Boolears-algebraB with ordering set of stateBg.

The coupled systei§ + A will be described by the bounded Boolean power
L ® B. As a physical state spageof S + .4 we will consider the convex enve-
lope of the set of all product states, that is, the set of albnvex combinations
a1 ® wi, mi € P, wi € Pg andy;, i € N, are nonnegative numbers with
sum 1.

Assume that we want to measure an observabtan S. Let (22, F) be the
value space oK. We choose a measuring apparatlislescribed by a Boolean
o-alegebraB and an observablX 4 on B with the value space{4, F4). If
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the value spaces oX and X 4 are different, we choose a measurable function
f : Q@ — Q4 (a pointer function). If the initial state & is m and the initial state
of Aismy, the initial state of the coupled syste®- A will be the product state
m ® m4. The measurement means an interaction between S and A, which results
in a change of the state of the coupled system. This change will be described by a
convexity preserving transformatiah: P — P. If (m ® my) is the final state of
S + A after the measurement, the restrictidden @ my) - AandV(im®@ my) - 8
uniquely describe the final states®fand.A, respectively.

A 5-tuple M = (B, X4, my4, f, V) will be called ameasuremenrdf X if the
following equality is satisfied:

m(X(F)) = V(Mm@ my - B(Xa(fX(F))),VF € F,Vme P_. 9)
If also the equality
mM(X(F)) = V(m® my - A(X(F)), YF € F,Vme P,. (10)

the measurement is called of thefirst kind
For every measurementt, aninstrumenis defined by

Lu(F)(m) = V(m® (F)ma)(B(Xa(f (F)) A2 (11)

forall F € Fand allm € P_. Herel »(F)(m) is ac-additive measure oh, and

the state obtained after normalization can be interpreted as the final sthtdten
measurement on the condition that the measurement leads to a result infhe set
The instrument reproduces the observa¥leia the equations

IAm(m)(AL) = m(X(F)),VF € F,Vme P.. (12)
A measuremenM is calledrepeatabléf for all E, F € F and allm,
MBI (F)M)(1L) = 1w (E N F)(mM)(LL). (13)

Two measurement8d1; and M, areequivalenif their instruments are equal.
The basic result is the following.

Theorem 3.1. For every regular observable X on an effect algebra L there exists
a measurement.

The measurementin the above theorem need not be repeatable. The existence
of a repeatable measurement was proved for discrete observables on orthomodular
lattices admitting conditional probabilities in (Pulmanapd994), where also
some other special types of measurements have been studied (see also Tensor
Products of Hilbert Space Effect Algebras, Preprint.).
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